跳到主要内容

线程同步: 序言

概念

假设有4个线程A、B、C、D,当前一个线程A对内存中的共享资源进行访问的时候,其他线程B, C, D都不可以对这块内存进行操作,直到线程A对这块内存访问完毕为止,B,C,D中的一个才能访问这块内存,剩余的两个需要继续阻塞等待,以此类推,直至所有的线程都对这块内存操作完毕。 线程对内存的这种访问方式就称之为线程同步,通过对概念的介绍,我们可以了解到所谓的同步并不是多个线程同时对内存进行访问,而是按照先后顺序依次进行的

为什么要同步

在研究线程同步之前,先来看一个两个线程交替数数(每个线程数50个数,交替数到100)的例子:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <pthread.h>

#define MAX 50
// 全局变量
int number;

// 线程处理函数
void* funcA_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
int cur = number;
cur++;
usleep(10);
number = cur;
printf("Thread A, id = %lu, number = %d\n", pthread_self(), number);
}

return NULL;
}

void* funcB_num(void* arg)
{
for(int i=0; i<MAX; ++i)
{
int cur = number;
cur++;
number = cur;
printf("Thread B, id = %lu, number = %d\n", pthread_self(), number);
usleep(5);
}

return NULL;
}

int main(int argc, const char* argv[])
{
pthread_t p1, p2;

// 创建两个子线程
pthread_create(&p1, NULL, funcA_num, NULL);
pthread_create(&p2, NULL, funcB_num, NULL);

// 阻塞,资源回收
pthread_join(p1, NULL);
pthread_join(p2, NULL);

return 0;
}
C++

理论上应该输出: 50 + 50 == 100 的, 但是:

[root@localhost hx_thread]# ./app
Thread B, id = 139910015084288, number = 1
Thread A, id = 139910023476992, number = 1
Thread B, id = 139910015084288, number = 2
Thread A, id = 139910023476992, number = 2
Thread B, id = 139910015084288, number = 3
Thread A, id = 139910023476992, number = 3
Thread B, id = 139910015084288, number = 4
Thread A, id = 139910023476992, number = 4
Thread B, id = 139910015084288, number = 5
Thread A, id = 139910023476992, number = 5
Thread B, id = 139910015084288, number = 6
Thread A, id = 139910023476992, number = 6
Thread B, id = 139910015084288, number = 7
Thread A, id = 139910023476992, number = 7
Thread B, id = 139910015084288, number = 8
Thread A, id = 139910023476992, number = 9
Thread B, id = 139910015084288, number = 10
Thread A, id = 139910023476992, number = 10
Thread A, id = 139910023476992, number = 11
Thread B, id = 139910015084288, number = 12
Thread A, id = 139910023476992, number = 12
Thread B, id = 139910015084288, number = 13
Thread A, id = 139910023476992, number = 13
Thread B, id = 139910015084288, number = 14
Thread A, id = 139910023476992, number = 14
Thread B, id = 139910015084288, number = 15
Thread A, id = 139910023476992, number = 15
Thread B, id = 139910015084288, number = 16
Thread A, id = 139910023476992, number = 16
Thread B, id = 139910015084288, number = 17
Thread A, id = 139910023476992, number = 17
Thread B, id = 139910015084288, number = 18
Thread B, id = 139910015084288, number = 19
Thread B, id = 139910015084288, number = 20
Thread A, id = 139910023476992, number = 19
Thread B, id = 139910015084288, number = 21
Thread A, id = 139910023476992, number = 21
Thread B, id = 139910015084288, number = 22
Thread B, id = 139910015084288, number = 23
Thread A, id = 139910023476992, number = 23
Thread B, id = 139910015084288, number = 24
Thread A, id = 139910023476992, number = 24
Thread B, id = 139910015084288, number = 25
Thread A, id = 139910023476992, number = 25
Thread B, id = 139910015084288, number = 26
Thread A, id = 139910023476992, number = 26
Thread B, id = 139910015084288, number = 27
Thread A, id = 139910023476992, number = 27
Thread B, id = 139910015084288, number = 28
Thread A, id = 139910023476992, number = 28
Thread B, id = 139910015084288, number = 29
Thread A, id = 139910023476992, number = 29
Thread B, id = 139910015084288, number = 30
Thread A, id = 139910023476992, number = 30
Thread B, id = 139910015084288, number = 31
Thread A, id = 139910023476992, number = 31
Thread B, id = 139910015084288, number = 32
Thread A, id = 139910023476992, number = 32
Thread B, id = 139910015084288, number = 33
Thread A, id = 139910023476992, number = 33
Thread B, id = 139910015084288, number = 34
Thread A, id = 139910023476992, number = 34
Thread A, id = 139910023476992, number = 35
Thread B, id = 139910015084288, number = 36
Thread A, id = 139910023476992, number = 37
Thread B, id = 139910015084288, number = 38
Thread A, id = 139910023476992, number = 38
Thread B, id = 139910015084288, number = 39
Thread A, id = 139910023476992, number = 39
Thread B, id = 139910015084288, number = 40
Thread A, id = 139910023476992, number = 40
Thread B, id = 139910015084288, number = 41
Thread A, id = 139910023476992, number = 41
Thread B, id = 139910015084288, number = 42
Thread A, id = 139910023476992, number = 42
Thread B, id = 139910015084288, number = 43
Thread A, id = 139910023476992, number = 43
Thread B, id = 139910015084288, number = 44
Thread A, id = 139910023476992, number = 44
Thread B, id = 139910015084288, number = 45
Thread A, id = 139910023476992, number = 45
Thread B, id = 139910015084288, number = 46
Thread A, id = 139910023476992, number = 47
Thread B, id = 139910015084288, number = 48
Thread A, id = 139910023476992, number = 48
Thread B, id = 139910015084288, number = 49
Thread A, id = 139910023476992, number = 49
Thread B, id = 139910015084288, number = 50
Thread A, id = 139910023476992, number = 50
Thread B, id = 139910015084288, number = 51
Thread A, id = 139910023476992, number = 51
Thread B, id = 139910015084288, number = 52
Thread A, id = 139910023476992, number = 52
Thread B, id = 139910015084288, number = 53
Thread A, id = 139910023476992, number = 53
Thread B, id = 139910015084288, number = 54
Thread A, id = 139910023476992, number = 54
Thread B, id = 139910015084288, number = 55
Thread A, id = 139910023476992, number = 55
Thread A, id = 139910023476992, number = 56
Shell

通过对上面例子的测试,可以看出虽然每个线程内部循环了50次每次数一个数,但是最终没有数到100,通过输出的结果可以看到,有些数字被重复数了多次,其原因就是没有对线程进行同步处理,造成了数据的混乱。

两个线程在数数的时候需要分时复用CPU时间片,并且测试程序中调用了sleep()导致线程的CPU时间片没用完就被迫挂起了,这样就能让CPU的上下文切换(保存当前状态, 下一次继续运行的时候需要加载保存的状态)更加频繁,更容易再现数据混乱的这个现象。

##container##
Clip_2024-01-18_20-28-49.png ##w800##

CPU对应寄存器、一级缓存、二级缓存、三级缓存是独占的,用于存储处理的数据和线程的状态信息,数据被CPU处理完成需要再次被写入到物理内存中,物理内存数据也可以通过文件IO操作写入到磁盘中。

在测试程序中两个线程共用全局变量number当线程变成运行态之后开始数数,从物理内存加载数据,让后将数据放到CPU进行运算,最后将结果更新到物理内存中。如果数数的两个线程都可以顺利完成这个流程,那么得到的结果肯定是正确的。

如果线程A执行这个过程期间就失去了CPU时间片,线程A被挂起了最新的数据没能更新到物理内存。线程B变成运行态之后从物理内存读数据,很显然它没有拿到最新数据,只能基于旧的数据往后数,然后失去CPU时间片挂起。线程A得到CPU时间片变成运行态,第一件事儿就是将上次没更新到内存的数据更新到内存,但是这样会导致线程B已经更新到内存的数据被覆盖,活儿白干了,最终导致有些数据会被重复数很多次。

同步方式

对于多个线程访问共享资源出现数据混乱的问题,需要进行线程同步。常用的线程同步方式有四种:互斥锁、读写锁、条件变量、信号量。所谓的共享资源就是多个线程共同访问的变量,这些变量通常为全局数据区变量或者堆区变量,这些变量对应的共享资源也被称之为临界资源。

##container##
Clip_2024-01-18_20-31-48.png ##w800##

找到临界资源之后,再找和临界资源相关的上下文代码,这样就得到了一个代码块,这个代码块可以称之为临界区。确定好临界区(临界区越小越好)之后,就可以进行线程同步了,线程同步的大致处理思路是这样的:

  • 在临界区代码的上边,添加加锁函数,对临界区加锁。

    • 哪个线程调用这句代码,就会把这把锁锁上,其他线程就只能阻塞在锁上了。
  • 在临界区代码的下边,添加解锁函数,对临界区解锁。

    • 出临界区的线程会将锁定的那把锁打开,其他抢到锁的线程就可以进入到临界区了。
  • 通过锁机制能保证临界区代码最多只能同时有一个线程访问,这样并行访问就变为串行访问了。

参考链接

爱编程的大丙-线程同步

请作者喝奶茶:
Alipay IconQR Code
Alipay IconQR Code
本文遵循 CC CC 4.0 BY-SA 版权协议, 转载请标明出处
Loading Comments...